Smellscapes: The Loss of Smell in a Visual Culture

Susana Cámara Leret
SMELLSCAPES:
THE LOSS OF SMELL
IN A VISUAL CULTURE

SUSANA CÁMARA LERET
Fig. 1 Smell can provide a new understanding of nature
I would like to thank the following people for their support and guidance throughout the project:

Rodrigo Camara Leret; Maria Luisa Leret Verdu from the Department of Physiology (Animal Physiology II) University Complutense of Madrid, Spain; Jan Frits Veldkamp PhD from the National Herbarium of the Netherlands; Frans Krens PhD and Maarten A. Jongsma PhD from Plant Breeding International, Wageningen University and Research Center, The Netherlands; Yehuda Shoenfeld, Head of Department of Medicine B and Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel; Professor Fabrizio Benedetti from the Department of Neuroscience, University of Turin Medical School, Italy; Andrea Evers, Investigator Clinical Psychology at the Medisch Centrum Radboud Universiteit Nijmegen, The Netherlands; Dirk Hermans from the Center for the Psychology of Learning and Experimental Psychopathology, University of Leuven, Belgium; Professor Berry M. Spruijt, Ethology and Welfare, Department of Biology, Faculty of Beta Sciences, University of Utrecht, The Netherlands.
Fig. 2 *Thymus vulgaris*: Plants’ scents have been traditionally employed for medicinal purposes
CONTENTS

INTRODUCTION
— 01

1. **THE LOSS OF SMELL**
 I. An evolutionary perspective — 03
 II. The sociocultural devaluation of smell — 04

2. **MAN & NATURE**
 — 09

3. **THE IMPORTANCE OF SMELL**
 I. Scent in Nature: The Chemical Triggers — 13
 II. The Primitive Human Sense of Smell — 14

4. **THE NOCEBO & PLACEBO EFFECT**
 — 23

CONCLUSION
— 29

ILLUSTRATIONS
— 31

ENDNOTES
— 33
Fig. 3 We live in a predominantly visual culture

Fig. 4 Our sense of smell has been culturally undervalued
INTRODUCTION

The prevalence of a visual culture is our inheritance of a long ongoing biological and sociocultural process. As cultural and social ideologies evolved, so did our relationship and notion of our natural environment. By considering the interdependence of the binomial natural-artificial, and consequently nature-man, we are confronted with the question of how changes in one sphere can affect processes in the other, and vice versa.

Smell has been undervalued throughout history, due to both biological and cultural motives. Humans have lost smell, possibly due to our development of trichromatic vision and our less dependency on our chemical sense for survival, yet we have also negated it culturally, and underestimated it in relation to our other senses. This has had its repercussions on our concept of nature and our gradual domestication of it. As a result, the chemical relationship we share with our natural environment has been overlooked and its potentials unexplored. Our sense of smell has unique functions which could be used to our advantage, whilst offering us new experiences. Nature possesses intricate chemical tools, which could aid in this endeavor. What would the design implications of this chemical relationship with our environment be?
The development of colour vision made our reliance on chemical signals unnecessary. Today tests for visual deficiencies, such as the Ishihara test for colour blindness, prevail over smell deficiency tests.

Our sense of smell and its functions are commonly overlooked.
1. THE LOSS OF SMELL

Smell was probably relegated to a secondary role throughout evolution, due to our decreasing dependency on it. When our ancestors developed trichromatic vision, their need for chemical sensors decreased. Our spectral sensitivity provided us with further information about our environment, helping to detect the boundaries of objects and their distance in relation to us. For example, our ability to discern ripe fruit due to its contrast against the surrounding foliage, was not possible for dichromatic animals, with less sensitivity in the red, yellow and green regions of the visual spectrum. Because trichromacy is not universal in the animal kingdom, this evolutionary mutation could have meant an advantage in our ancestor’s survival, thus favouring it genetically.

The development of colour vision also made the reliance on chemical signals in reproduction unnecessary. Insect mating for example, functions through the use of pheromones, yet the newly perceived visual signals (such as sexual swelling) were more explicit, and more easily detectable than air transmitted molecules. This could have lead to our replacement of a more chemical based system in our ancestor’s social reproductive activities, for a “vision-based signaling sensory mechanism.” Yet remnants of our previous abilities can still be found our vestigial vomeronasal organs found in our nasal cavities, which were once used to detect pheromones. Present aesthetic interventions on the human physiognomy such as nasal plastic surgery, might threaten its very future existence. This last point illustrates the extent to which our sense of smell and its functions are widely misunderstood and ignored.

The olfactory system has generated a large number of individual receptor genes, which constitute the largest gene super-family in the vertebrate genome. Humans have about 900 olfactory receptor genes, but around 63% of these are non-coding, called pseudo-genes, due to evolutionary mutations:

“In common with other apes and Old World monkeys, humans have a degraded sense of
smell. About 60%* of the thousand or so mammalian olfactory receptor genes in people don’t function or contribute to our sense of smell (...) However in mice and dogs, which lack a trichromatic vision but have a more sensitive nose, only 20% of olfactory genes don’t work.”

Despite our high percentage of pseudo-genes, we still have 300 active olfactory receptor genes, whilst the visual system needs only two genes to detect the colour spectrum. According to Leslie Vosshall, Head of the Laboratory of Neurogenetics and Behavior at Rockefeller University, the human nose can still detect about 10,000 different odours, in comparison to insects, which can only perceive those essential for their own survival. Could we maybe be undervaluing our sense of smell, unaware of its great potential and functions?

II. THE SOCIOCULTURAL DEVALUATION OF SMELL

Historically, speaking, this seems to be the case, since smell is not only a biological experience and western culture has long since underestimated smell:

“The current low status of smell in the West is a result of the revaluation of the senses by philosophers and scientists of the 18th and 19th centuries (...) By the early 19th century, the use of aromatics for medicinal purposes had been largely discredited by sceptical scientists, in favour of chemical medicaments (...) the influence of aromaphobic scientists, philosophers and moralists was widespread.”

Regarded as primitive, the sense of smell was of low esteem in relation to vision, which stood as a symbol of rationality and a civilised, scientific thinking. Often seen as a vehicle of contamination, smell ranks low in the hierarchy of the senses. So low that the best smell “is not a good smell but no smell at all.” As Michel de Montaigne observed:

“The sweetness even of the purest breath has nothing more excellent about it than to be without any odour that offends us.”

Yet this aversion towards olfaction is not common to other non-Western cultures, where smell is highly valued. The Ongee of the Andaman islands, for example, organise their universe in relation to smell, their calendar being structured in relation to the odours of flowers, which bloom at different times of the year.

Our discrimination of smell versus the other senses has had its consequences and its negative connotations have impeded a deeper understanding of the importance of chemical signalling. Little investigation has been done on the potentials of smell and we know less about it than our other senses. Whereas ants communicate and organise their complex societies with odours and pheromones we chose to live in a chemical haze, polluted by strong synthetic smells, which are often employed to mask natural scents. The predominance of a western visual culture has reinforced this situation. Market pulses thrive to enhance the visual image,

* This percentage varies in different sources between 60% and 63%.
“Which fragrance type are you?”

(Circle favorite items in all the columns. Your fragrance type will be revealed in the column with the most circles.)

I LIKE

Love Songs
Candlelight
Debussy
Ruffled Blouses
Tea for Two
Rainy Days
Late Late Shows
Revel
Stray Kittens
Browsing

TOP SCORE HERE?
Then you need the fragrance that’s as romantic as you are.
You are:
APPLE BLOSSOM

I LIKE

Op Art
Diet Cola
Isometric Exercises
Discotheques
Calder Mobiles
James Bond
Cool Jazz
Friday Afternoons
Short Hair
Charge Accounts

TOP SCORE HERE?
Then you’ll want a fragrance as modern as you are.
You are:
TULIP

I LIKE

Family Albums
Children
Season Tickets
Casserole Dinners
Picture Hats
Poodle Puppies
Letter Writing
Monogrammed Sheets
Poetry
Breakfast in Bed

TOP SCORE HERE?
Then you’re meant for the fragrance that is as feminine as you are.
You are:
WHITE MAGNOLIA

Available at your favorite cosmetic counter.

Helena Rubinstein
Fifth Avenue, New York

Fig. 7 Smell is not only a biological experience — it is also cultural.
suppressing natural odors, which have in some cases even acquired negative connotations. This might be perhaps our inheritance of the 18th century’s puritanist mentality, and according to Freud: “organic repression of man’s pleasure in smell” might have resulted in “his susceptibility to nervous disease.”¹¹
These results from a pilot smell identification test show the extent to which smell lacks attention in our society. We are not used to the direct identification of odours, in the absence of sight.

Studies show that olfaction can improve with training. Such is the case for perfumers.
Fig. 10 The great rose is an example of man's careful breeding of nature
Few people know that butterflies are scented. Their fragrances can vary from flower-like aromas like jasmine, to spices like lemon or cinnamon. They can smell of vanilla or chocolate, yet also unpleasantly like vinegar or urine. Still, throughout history we have persisted on collecting these insects for purely visual motives, when apparently it is possible to smell them and release them unharmed. This fact goes to illustrate how our interaction with our natural environment has been greatly mediated by the visual realm.

Today, human manipulation of nature has resulted in a loss of attributes in some natural species. When humans invented agriculture, approximately 10,000 years ago, by harvesting and cultivating specific plants to produce food, the selection criteria eventually played a determining role in the evolution of those species. Could artificial selection be paramount today in deciding the fate of certain species in the plant world? The term alludes to ‘artifact: standing for a thing reflecting human will’. This could explain why our genetic manipulation of flowers has resulted in unpredicted gene silencing and paradoxically in the loss of scent of some of them.

The effects of our underestimation of smell can thus be seen, yet not smelled, in genome modifications of certain plant species and cultivars. Plant breeders for example, might have accidentally damaged the genes encoding the enzymes that produce scent compounds, and genetic changes have probably favoured the “pigment pathway at the expense of scent.” As John Dolan, a long-time rose breeder and consultant in California stated:

“We have twenty-six different characteristics to consider in making a rose (...) Roses per bush, vase life, color, form, thorns and so on. In the marketplace, all these things trump scent.”

Today we find different methods employed in the breeding of flowers, from transgenic
processes where foreign genes with a desired trait are inserted into a recipient plant, to
cisgenesis, which employs genes from sexually compatible plants, and to breeding methods
which do not fall under current GMO regulations. Yet what new scent phenotypes could
result from a shift in our selection criteria? Presently, we find few records of scent-directed
initiatives:

“Colour is the most important determining trait in flowers. For many important ornamentals
not the entire spectrum of colours is available (...) True blue is lacking in many important
species, such as rose, chrysanthemum, gerbera and carnation, but also bright yellow is not
present in the variety range of many species (...) Genetic manipulation opens up possibilities
for the molecular breeder to expand the color range within a species or cultivar.”

According to Robert Raguso, a scent biologist from the University of South Carolina, this
is a human bias, due to which “scent is either ignored or treated as insolubly complex.”
Even so, it is also important to note the influence the market holds in this scenario where the
great rose is not only an example of man’s careful breeding of nature but also of economic
repercussions, with its loss of scent due to market demands. Since 1993, the EU imports
of fresh cut flowers have been dominated by ‘Rosa’ (the genus of roses). Between the years
2004 and 2008, imports of Rosa increased by 7.6% annually and today, the EU is the
world’s leading importer of flowers, with imports amounting to 3.5 billion euros in 2008.
The Netherlands is the leading importer of cut flowers from outside the EU along with the
main supplier to other EU member states.

Perhaps we could trace the origins of present Dutch bulb trade, back to the tulip craze. This
“tulip mania” which struck the country in the 17th century, further accounts for man’s
insistence on domesticating the natural. The unpredictable chromatic variations in the colour
of tulips’ petals’ (as a result of the action of a virus which caused the pigment in its petals
to ‘break’), boomed the market prices of individuals containing such colour breaks.
Explanations for this phenomenon vary, yet a possible reason for this frenzy could lie in the
fact that a tulip, amongst other flowers, stands for a visual delight, seemingly proper to the
Dutch Calvinist society of the time.

“(…) a tailored, somewhat austere blossom; inviting neither touch nor smell, the flower asks
to admire it from a distance. The fact that [the tulip] has no detectable scent is fitting: this is
an experience designed strictly for the delectation of the eye.”

A symbol of rationality, the visual symbiology of a tulip stands for order, as opposed to
scented flowers, which excite our primitive senses:

“To lean in and inhale the breath of a rose or peony is momentarily to leave our rational
selves behind, to be transported as only a haunting fragrance can transport us (…) Such
flowers propose a dream of abandon instead of form.”

Thoreau once wrote “In wildness is the preservation of the world” and a century later
Wendell Berry wrote “In human culture is the preservation of wildness.” But can a human
culture based on the discrimination of the senses and the negation of smell truly preserve
wildness?
During the Tulip Mania, Semper Augustus individuals boomed market prices.
Plants share a chemical relationship with their environment, attracting potential pollinators through their scents to ensure reproduction.

The Australian Orchid releases a perfume similar to a female wasp’s pheromone, luring the males into its pollination.

The scent of the Dead Horse Arum resembles that of rotting flesh, attracting flies.
3. THE IMPORTANCE OF SMELL

1. SCENT IN NATURE: THE CHEMICAL TRIGGERS.

“What’s in a name? That which we call a rose by any other name would smell as sweet.”
- William Shakespeare

Odours are perceptions, not things in the world. The fact that a molecule of phenylethyl alcohol smells like a rose is a function of our brain. But regardless of our sociocultural complexes, scent is of great importance in nature. In many species the chemical compounds released by plants work as a defense mechanism, or as an attraction mechanism for reproductive purposes. Floral scent initially evolved “by borrowing fragrances from other parts of the plant.” Many of the scent compounds found in what we now regard as pleasant fragrances once started out as plant defences:

“...compounds called terpenes that give juniper, oregano and basil foliage their characteristic odours drive herbivores away from the stems of some plants but attract pollinators to the flowers of others. Other terpenes that are antibacterial agents for trees also turn up in flowers – for example piney pinene in columbine and citrusy limonene in lavender (...) In nearly all plants salicylic acid turns on cellular defences against viruses. Add a methyl group to it and you get wintergreen, part of the fragrance of jasmine.”

The chemical complexity of the scent depends on the species. Snapdragons and petunias can release blends of seven to ten compounds while some orchids might secrete scents with around one-hundred. Snapdragons even function around the clock, releasing most of their odour between 9 a.m. and 4 p.m., in synchrony with bees’ work hours. This accounts for the intricate, chemical relationship established between plants and their environment: a chemical communication with their potential pollinators. Some flowers, such as the Australian orchid
or the bumblebee orchid, release chemicals that are virtually equal to those released by female wasps and bees, in order to attract the males. The dead horse arum, goes as far as to mimic the putrid flesh of sea gulls, not only visually but also in its smell to attract pollinating flies. The biggest flower in the world, called the amorphophallus titanium, can reach a height of 2,74 meters and flowers once for three days, every three years, and interestingly enough, it possesses an intense smell of rotten fish.\(^{25}\)

II. THE PRIMITIVE HUMAN SENSE OF SMELL

SMELL AS A RECOGNITION MECHANISM

The word scent derives from the French ‘sentir’ which in turn comes from the latin ‘sentire’ and ultimately means to perceive or experience in relation to sentiments and thoughts. Thus, the etymology of the word acknowledges the primitive nature of smell, as a means of recognition and communication. Smell is a chemical sense, the other being taste, which is approximately 75% smell. But unlike taste, smell can “signal over long distances.”\(^ {26}\) Through our sense of smell, we sample our environment for information, though the majority of the time we might not be aware of it.

“...the fatigue symptoms characteristic of sick-building syndrome are a survival reflex inherited from our evolutionary ancestors. This reflex causes us to feel tired, and therefore to avoid venturing out, when our olfactory receptors signal that the air is contaminated.”\(^ {27}\)

We are constantly testing the quality of the air we breathe, for example, using smell as a warning mechanism to alert us of possible dangers (such as smoke, or other harmful agents). We use our sense of smell as a detection mechanism for food or the presence of other individuals. In this respect, smell has a recognition function since we all have our own unique smell and can recognise and be recognised by others.\(^ {28}\) Our own smell derives from our apocrine glands, which secrete compounds that are odourless, but become scented through the action of bacteria. This is the reason why everyone has a unique smell, except for identical twins.

Our sweat also secretes a chemical signal which can communicate emotion, which explains why we can smell fear. A study done by Karl Grammer in Vienna, showed that women are capable of detecting fear in the armpit secretions of people who had watched a terrifying film. Another study by Martha McClintock showed that we also secrete compounds that transmit information about our mood to others.
Fig. 15 Except for identical twins, everyone has their own, unique smell
As our sense of smell is linked to our limbic system, its effects sometimes act on an unconscious level. The limbic system, situated beneath the cerebral cortex, deals with emotions, motivation and the association of emotions with memory. The olfactory system has more direct contact with our external environment than our other senses, since it directly projects into the brain through the olfactory bulb, while the auditory and visual information reach the orbitofrontal cortex after significant processing. This anatomical and functional proximity to the limbic system, in comparison with our other sensory modalities, explains why smell has a unique privilege to the subconscious. This is also why we respond in an involuntary way to smell.

“The limbic system is increasingly recognised to be crucial in determining and regulating the entire emotional ‘tone’. Excitation of this, by whatever means, produces heightened emotionalism and an intensification of the senses. It also has a lot to do with the formation of memories and this is the reason that smell and memory are so intimately linked.”

Odour-cued memories have been rated as more pleasant and their emotional potency is linked to the activation of the amygdala. Studies suggest that the amygdala-hippocampal complex may be involved in a particular olfactory memory system. And although we must first remember a smell before we can clearly identify it, smell memory is said to fade away less rapidly than other sensory related memories. Literature has long used this associative emotional power of smell as a tool for describing strong sentimental recollections. In The Remembrance of Things Past, Proust describes such an emotional upheaval, triggered by the taste and smell of a madeleine. He then notes that:

“When nothing else subsists from the past (...) after the people are dead, after the things are broken and scattered (...) the smell and taste of things remain poised a long time, like souls (...) bearing resiliently, on tiny and almost impalpable drops of their essence, the immense edifice of memory.”

The so-called ‘Proust effect’ is a reference to the evocative power of scent. This is why a long-forgotten odour can revive a specific memory or a past experienced moment. But with the loss of specific scents, we are also faced with the loss of memories and experiences. Avery Gilbert wonders about this entire ‘smellscape’ which can “fade away with the changing of times and the closing of a beloved’s place.” Andy Warhol knew of this smell-memory effect. Apparently he would wear a cologne until he developed a strong emotional link with it, after which he would retire it to his personal smell museum, for his personal enjoyment.

This association between smell and memory means that smell can be linked to a particular experience. If we smell something before a negative experience, that smell will be linked to that particular experience. But the same is true for positive and pleasant experiences. This is probably why people have such an aversion towards the smell of hospitals, since unpleasant medical treatments, or surgery, can be associated with the pain or trauma. On the other hand, this associative power of smell could be used for positive, therapeutic practices, redefining the mind-body interdependency.
<table>
<thead>
<tr>
<th>TIME NO. 1</th>
<th>TIME NO. 2</th>
<th>GENERAL COMMENTS AND OBSERVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE 28 BRITISH</td>
<td>00:14:57</td>
<td>lotion described as shower gel, a clean smell: something fragrant yet neutral but artificial. Opening second nostril did not allow to smell better. “When you breathe out you smell it immediately...at a point it is not so noticeable.” After a while subject remarked that although the odour was hard to distinguish he could still ‘feel’ it (irritation).</td>
</tr>
<tr>
<td>MALE 29 MEXICAN</td>
<td>00:10:52</td>
<td>It was not easier to detect the second smell once let go of the nostril, it was not difficult to detect the second smell after the first. Only observation is that the smell diminished. Mixture did not influence perception. Coffee predominant smell. Memories: lotion reminded of his mother. Coffee reminded him of his kitchen in the morning.</td>
</tr>
<tr>
<td>MALE 22 BELGIAN</td>
<td>00:29:93</td>
<td>Subject had a cold and left nostril clogged. When the second smell was supplied subject remarked that the 1st smell was still in ‘there’. “When you exhale it’s still in the nose”.</td>
</tr>
<tr>
<td>MALE 28 CHINESE</td>
<td>00:07:65</td>
<td>When released nostril you could smell the odour once again. Not difficult to distinguish the second smell initially smell just faded. There was an initial mixture.</td>
</tr>
<tr>
<td>FEMALE 26 CHINESE</td>
<td>00:03:98</td>
<td>It feels like smell is around nose. “I have to really think if the smell is still there or if I just remember the smell”. The second smell was mixed with the first. Smelled coffee right away. Easily detected the second smell can still be felt tickling the nose. Nostrils feel different afterwards (olfactory irritation).</td>
</tr>
</tbody>
</table>

Fig 16 Results from Olfactory Adaptation Test

This pilot test was done to test how we adapt to odours. Subjects were exposed to two different smells, first whilst pinching one nostril shut, and then to the second smell alone whilst smelling freely.
Results from a pilot smell discrimination test which show how little we are accustomed to identifying variations in odour intensity.

We distinguish smells as strong or weak.

We have difficulties detecting nuances in odour intensity, and generally rate odours as strong or weak, pleasant or unpleasant.
SMELL AND ITS EFFECTS ON MOOD AND BEHAVIOUR

The human perception of odour is defined by the pleasantness-unpleasantness dimension. The effects of smell on mood and behaviour have been recorded in several studies, where positive ‘hedonic’ odours, have been shown to improve emotional and physical health, reducing stress and anxiety whilst increasing alertness. The anatomical overlap of the olfactory and limbic systems could account for this hedonic aspect of odour:

“Amygdalar activity depends on the hedonic properties of odorants, and unpleasant odour increases rCBF (regional cortical blood flow) in the left amygdala. Thus distinct neurochemical changes in selected brain areas occur as a result of exposure to different odours.”

Studies have shown that smell can be put to therapeutic advantage, and deficits in our olfactory functions have even been proven as a sign of illness, such as in schizophrenia, depression, anxiety and extreme migraines. We smell different when we are ill and some illnesses can even be diagnosed by their associated smell (such as acetone and diabetes). Many interactions exist between the immune and the olfactory system, and when immunological function (autoimmunity) is impaired, olfaction can also be affected. Even so, the analysis of olfactory ability is not yet implemented by clinicians in both diagnosis and treatment, being overlooked by both patients and their clinicians.
Fig. 19 Smell can provide relevant information about ourselves and our environment
Fig. 20 Mapping out smell's relevance
The compound linalool found in the scents of certain plants such as *Rosemarinus officinalis*, *Melissa officinalis* and *Lemon grass*, reduces anxiety and aggressive behaviour in both mice and men.

By using placebos the brain is triggered into releasing its own painkillers known as endorphins.
4. THE NOCEBO & PLACEBO EFFECT

NOCEBO – EXPERIENCE – ODOURS
EXPECTATIONS – BELIEF SYSTEM –
SELF-HEALING – ANTICIPATION –
ENDORPHINS – SUBTRACTIVE

I. THE NOCEBO EFFECT: BELIEVING TRUMPS SMELLING

Our experiences with odours can thus exert a significant influence on the way our brain processes them. As Dr. Monique Smeets from Utrecht University points out, most odours acquire meaning by learning and thus through association odour becomes paired with memory. This is the case since our senses are manipulable and affected by our beliefs. Tests show that odours can elicit behaviour and implicit associations to certain smells can even cause physical illness. Thus, odour aversions can be created through experiences, and smells associated with trauma can leave a strong imprint. Our brain shapes our perception of smell since the cerebellum monitors our sensory input (odor strength) in order to control a motor action (inhalation).

This mental aspect in our perception of smells is linked to several olfactory phenomenons such as olfactory adaptation and olfactory suggestion. The first one alludes to the capability we have of adapting to odours, which is influenced by several factors such as time of exposure, odour strength an odour specificity. Long-term adaptation is the reason why some jobs are bearable by some people, such as pig-farming, with a constant exposure to strong and unpleasant odours. Adaptation also gives us the capability of eventually detecting small nuances in smells, essential in the job of a perfumer. Olfactory suggestion, on the other hand, alludes to our mental expectancies of smells:

“(…) just expecting a smell can trigger odor perception (…) Expectations alter the perception of actual odors (…) odors we think are benign fade from awareness, while hazardous ones hold our attention and stay strong.”

Both aspects of smell are related to the ‘sick building syndrome’, because the nose and brain constantly reshape our olfactory awareness of the environment. Because of this, our perception of smells can have extreme physical consequences on the body’s physical health and smells perceived as harmful can cause illness. This is the case of sufferers from Multiple
The compound linalool found in the scents of certain plants such as Rosemarinus officinalis, Melissa officinalis and Lemon grass, reduces anxiety and aggressive behaviour in both mice and men.

A test done in Nijmegen University proved that our odour associations can elicit behaviour. Being exposed to the smell of lemon - considered as a clean scent - subjects cleaned more regularly after themselves, whilst eating crumbly crackers.
Fig. 25 What happens when we react in an extreme manner with our chemical self?
Chemical Sensitivity (MCS) also known as Ideopathic Environmental Intolerance (IEI). MCS seems to be one of the only illness where the patient diagnoses their own condition. Our associations to smells can thus have great consequences: if you tell someone that a smell is harmful, their perception of that smell will effectively change.43

"IEI (ideopathis environmental intolerance) sufferers are no more sensitive to odour than anyone else (...) a patient’s brain intuits harm from a sensory message that causes no alarm in a healthy person (...) We sometimes create odour aversions in a misguided attempt to avoid truly bad smells (...) All it takes is a single episode of physical distress to turn an odour into a trigger for illness. Symptom learning works better with malodors than with pleasant, fresh scent."44

This nocebo effect of smells can also spread from one odour to another, which is known as stimulus generalisation. The propagation to related odours can happen up to a week after the initial event. In the movie Safe by Todd Haynes45, this chain-reaction effect is clearly shown in the main character played by Julianne Moore when an initial exposure to car pollution triggers a series of consequent physical adversities to other odours. With the tagline: “In the 21st century... Nobody will be safe”, what the movie illustrates, by depicting this ‘sociogenic illness’, is how our perceptions and beliefs in relation to odours can eclipse the very act of smelling.

II. THE PLACEBO EFFECT: SMELL-MEMORY

The placebo effect works on the promise of treatment and the belief system of the recipient. Expectations of pain and relief constitute a primary component, which then orchestrate the brain and body’s responses accordingly. Fabrizio Benedetti, from the University of Turin has discovered many of the biochemical reactions involved in this mechanism, revealing a series of self-healing processes. The effect is found to be successful mainly in disorders which have in common their engagement in:

“(…) higher cortical centers that generate beliefs and expectations, interpret social cues and anticipate rewards. So do chronic pain, sexual dysfunction, Parkinson’s and many other ailments that respond robustly to placebo treatment.”46

Michel de Montaigne, in an early allusion to placebos, wrote in 1572 that the mere sight of medicine could be operative.47 The potential of the brain’s own “centralised network for healing,” has even overtaken drugs like Prozac, and has revolutionised the practice of pharmacology in the past decade:

“From 2001 to 2006, the percentage of new products cut from development after Phase II clinical trials, when drugs are first tested against placebo, rose by 20%. The failure rate in more extensive Phase III trials increased by 11%, mainly due to surprisingly poor showings against placebo.”48

The placebo effect is caused by the physical reaction of the brain under a treatment which

* The opposite of the placebo effect. A psychological or psychosomatic factor that engenders or exacerbates an illness.
is believed to cure, releasing endorphins which are the body’s own, natural painkillers. In a study done by the University of Michigan, it was found that the participants:

“showed a increase in the activation of their mu opioid endorphin system after they were told that the “medicine” was coming and the placebo was given. The most pronounced differences were seen in four areas of the brain known to be involved in complex responses to, and processing of, pain.”

In this respect, smells linked to experiences and memory can also exert a great influence in this self-healing processes. The potential of smell to work on another level from the verbal, the unconscious, could be used for therapeutic advantage in the treatment of illnesses. Its effects on mood and behaviour make smell reactions uncontrolable. Because it is an automatic process, we react in an emotional manner to odours. Clinical studies show proof of the healing potency of smell through its associational link to past experiences:

“Insulin was injected into healthy male volunteers once a day for four days and their blood glucose was measured (it fell). At the same time, they were exposed to smell. On the fifth day they were just given the smell, and, their blood glucose fell.”

Thus, by associating smell with a positive healing treatment and then reinforcing this connection, smell has been proven to be capable of substituting for the treatment. This means that this smell-memory effect could possibly be thought of as a placebo. In this respect, smell could redefine medical experiences. Could we use smell as a placebo, replacing our ingestion of pills?
CONCLUSION

This first half of the project aims to analyse the underlying processes which conform our chemical sense of smell, commonly eclipsed by the predominance of the visual in our society. The goal was not only to analyse cultural and social conventions in relation to smell, but also to explore the inner workings of our chemical sense, along with its relevance in nature. Surprisingly, smell’s unique functions have been found at the core of a complex interdependency with our immediate surroundings.

Throughout this project, I found that the smell-memory effect could function as a placebo, and odours could be used to trigger physical reactions in the body. This means that smell not only affects our emotions, but also manages numerous cognitive processes and subsequent physical reactions in our bodies. It’s intrinsic link to memory and its associative power, can be used to create new learning procedures, redefining the mind-body binome. This power of smell could change the way we address health as a whole, along with existing practices in clinical therapy.

By addressing smell and it’s importance, I believe we also gain a different perception of our natural environment, which could eventually lead to a new interaction with it. Our present intervention with nature, is mostly aimed at a visual delectation. By proposing this chemical exchange with our surroundings, we can question our inherited perception of nature, and redefine our role amongst other species. A new dialogue is insinuated in this context, which brings into question what we have built around us.

How can the shift from a visually-mediated cultural practice into a chemical one, change existing systems and processes?
ILLUSTRATIONS

Fig. 1 **Smell can provide a new understanding of nature**
Collage by Susana Câmara Leret, from Köhler’s Medizinal Pflanzen Atlas, 1887

Fig. 2 **Thymus vulgaris: Plants’ scents have been traditionally employed for medicinal purposes**
Collage by Susana Câmara Leret, from Köhler’s Medizinal Pflanzen Atlas, 1887

Fig. 3 **We live in a predominantly visual culture**
from The Society of Spectacle, Guy Debord

Fig. 4 **Our sense of smell has been culturally undervalued**
Collage by Susana Câmara Leret

Fig. 5 **Tests for vision prevail over tests for smell**
Collage by Susana Câmara Leret

Fig. 6 **19th Century illustration of brain function**
Google Images

Fig. 7 **Smell is not only a biological experience — it is also cultural**
Flickr

Fig. 8 **Results from Smell Identification Test**
Collage & graph by Susana Câmara Leret

Fig. 9 **Olfaction needs training too**
Susana Câmara Leret

Fig. 10 **The great rose is an example of man’s careful breeding of nature**
Collage by Susana Câmara Leret

Fig. 11 **Illustrations of Semper Augustus tulips**
Flickr

Fig. 12 **Bee attracted to lavender**
Collage by Susana Câmara Leret
Fig. 13 **Australian Orchid**
Collage by Susana Cámara Leret

Fig. 14 **Dead Horse Arum**
Collage by Susana Cámara Leret

Fig. 15 **Except for identical twins, everyone has their own, unique smell**
Collage by Susana Cámara Leret

Fig. 16 **Results from Smell Adaptation Test**
Collage & graph by Susana Cámara Leret

Fig. 17 **Results from Smell discrimination Test**
Collage & graph by Susana Cámara Leret

Fig. 18 **We distinguish smells as strong or weak**
Susana Cámara Leret

Fig. 19 **Smell can provide relevant information about ourselves and our environment**
Sketch by Susana Cámara Leret

Fig. 20 **Mapping out smell’s relevance**
Infographic by Susana Cámara Leret

Fig. 21 **Drugs like Prozac could be replaced by placebos**
Collage by Susana Cámara Leret

Fig. 22 **Our natural painkillers**
Flickr

Fig. 23 **Linalool has been proven to reduce anxiety**
Collage by Susana Cámara Leret

Fig. 24 **Odours can influence behaviour**
Collage by Susana Cámara Leret

Fig. 24 **What happens when we react in an extreme manner with our chemical self?**
Collage by Susana Cámara Leret
1 Color Vision: How Our Eyes Reflect Primate Evolution
Gerald H. Jacobs & Jeremy Nathans
Scientific American, March 16, 2009

2 Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates
Jianzhi Zhang and David M. Webb

3 Nose surgery and the vomeronasal organ
José García-Velasco and Santiago García-Casas

4 What we gave up for colour vision
Kurt Kleiner
New Scientist. 24, January 2004

5 Olfaction - A window to the mind
Shaye Kivity, Oscar D. Ortega-Hernandez and Yehuda Shoenfeld
IMAJ. Vol. 11. April 2009

6 The Smell Report. An overview of facts and findings
Director: Kate Fox
Social Issues Research Centre

7 The Anatomy of Disgust
Ian Miller, William

8 Michel de Montaigne
Of Smells
Essays 228

9 The Smell Report. An overview of facts and findings
Director: Kate Fox
Social Issues Research Centre
10 How we lost our sense of smell
AS Byatt
The Guardian, 1st September 2001

11 How we lost our sense of smell
AS Byatt
The Guardian, 1st September 2001

12 Biotechnology provides new tools for plant Breeding
Trevor V. Suslow, Bruce R. Thomas & Kent J. Bradford
University of California, Division of Agriculture and Natural Resources, 2002

13 Aroma therapy
Jonathan Knight
New Scientist. 12, February 2000

14 Aroma therapy
Jonathan Knight
New Scientist. 12, February 2000

15 The name of the Rose
Supervisors: Frans Krens, Jan Schaart
The Laboratory of Plant Breeding, Wageningen University

16 Making scents of flowers: It's time for science to close its eyes and sniff
Susan Millius
Science News. 27, July 2002

17 EU Cut flower imports
Eurostat figures 01, October 2008

18 The Botany of Desire: A Plant’s Eye—View Of The World
Michael Pollan
Random House Inc, New York, 2002

19 The Botany of Desire: A Plant’s Eye—View Of The World
Michael Pollan
Random House Inc, New York, 2002

20 The Botany of Desire: A Plant’s Eye—View Of The World
Michael Pollan
Random House Inc, New York, 2002

21 Romeo & Juliet
William Shakespeare
Act.2 sc.2, 1,66

22 What the Nose Knows: The Science of Scent in Everyday Life
Avery Gilbert

Endnotes
23 Aroma therapy
Jonathan Knight
New Scientist. 12, February 2000

24 Aroma therapy
Jonathan Knight
New Scientist. 12, February 2000

25 The Private Life of Plants: A Natural History of Plant Behaviour
David Attenborough

26 Smell (Olfaction): A tutorial on the sense of smell
Compiled by Tim Jacob
Cardiff University, UK

27 The Smell Report: An overview of facts and findings
Director: Kate Fox
Social Issues Research Centre

28 Smell (Olfaction): A tutorial on the sense of smell
Compiled by Tim Jacob
Cardiff University, UK

29 Smell (Olfaction): A tutorial on the sense of smell
Compiled by Tim Jacob
Cardiff University, UK

30 The Mystery of Smell: The Vivid World of Odors
Maya Pines
Howard Hughes Medical Institute. 2008

31 Smell Ya Later? Not if that smell goes extinct
Jennifer Fisher Wilson
The Smart Set from Drexel University. 23 June 2008

32 Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: The olfactory and immune system interrelationship
Samuel-Datum Moscavitch, Martine Szyper-Kravitz and Yehuda Shoenfeld
Clinical Immunology, 2009

33 Effect of pleasant odors on mood of males at midlife comparison of African-American and European men
S.S. Schiffman, M.S. Suggs, E.A. Sattely-Miller

Effect of environmental odors emanating from commercial swine operations on the mood of nearby residents
S.S. Schiffman, E.A. Miller, M.S. Suggs, B.G. Graham

Endnotes
The effect of pleasant odors and hormone status on mood of women at midlife
S.S. Schiffman, E.A. Miller, M.S. Suggs, B.G. Graham

34 Emotion, olfaction and the human amygdala: amygdala activation during aversive olfactory stimulation
D.H. Zald, J.V. Pardo

35 Smell (Olfaction): A tutorial on the sense of smell
Compiled by Tim Jacob
Cardiff University, UK

36 Olfaction -A window to the mind
Shaye Kivity, Oscar D. Ortega-Hernandez and Yeguda Shoenfeld
IMAJ. Vol 11, April 2009

37 Olfaction - A window to the mind
Shaye Kivity, Oscar D. Ortega-Hernandez and Yeguda Shoenfeld
IMAJ. Vol 11, April 2009

38 Sick from smells, but not silly
The Netherlands Organisation for Scientific Research (NWO)
August 25, 2009

39 Interview with Dr. Monique Smeets 10/20202020 ???.
Clinical Psychology -Utrecht University, The Netherlands

40 Interview with Dr. Monique Smeets 10/20202020 ???
Clinical Psychology -Utrecht University, The Netherlands

41 Interview with Patricia Bulsing: The link between odours and illness: How health cognitions affect odour perception

42 What the nose Knows: The science of scent in everyday life
Gilbert, Avery

43 Interview with Patricia Bulsing: The link between odours and illness: How health cognitions affect odour perception

44 What the nose Knows: The science of scent in everyday life
Gilbert, Avery

45 Safe
Todd Haynes
1995

46 Real / fake: Both can cure Depression
Steve Silberman
Wired UK article, October 2009
47 A Question of faith
Philip Hunter

48 Real / fake: Both can cure Depression
Steve Silberman
Wired UK article, October 2009

49 Brain’s painkillers may cause ‘placebo effect’, study
Kara Gavin
Medical News Today, 25 August 2005

50 Classical Conditioning of Insulin Effects in Healthy Humans
Ursula Stockhorst, Eva Gritzmann, et. al
The Institute of Medical Psychology (U.S., E.G., K.K., H.-J.S.), Diabetes Research Institute (Y.S.-N., A.H., F.A.G), and
Medical Institute of Environmental Hygiene (H.-W.B.), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany